Complexity of atoms of Regular Languages
نویسندگان
چکیده
The quotient complexity of a regular language L, which is the same as its state complexity, is the number of left quotients of L. An atom of a non-empty regular language L with n quotients is a non-empty intersection of the n quotients, which can be uncomplemented or complemented. An NFA is atomic if the right language of every state is a union of atoms. We characterize all reduced atomic NFAs of a given language, i.e., those NFAs that have no equivalent states. We prove that, for any language L with quotient complexity n, the quotient complexity of any atom of L with r complemented quotients has an upper bound of 2 − 1 if r = 0 or r = n; for 1 6 r 6 n− 1 the bound is
منابع مشابه
Towards a Theory of Complexity of Regular Languages
We survey recent results concerning the complexity of regular languages represented by their minimal deterministic finite automata. In addition to the quotient complexity of the language – which is the number of its (left) quotients, and is the same as its state complexity – we also consider the size of its syntactic semigroup and the quotient complexity of its atoms – basic components of every...
متن کاملMaximally Atomic Languages
The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result:...
متن کاملMaximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms
We relate two measures of complexity of regular languages. The first is syntactic complexity, that is, the cardinality of the syntactic semigroup of the language. That semigroup is isomorphic to the semigroup of transformations of states induced by non-empty words in the minimal deterministic finite automaton accepting the language. If the language has n left quotients (its minimal automaton ha...
متن کاملComplexity of Prefix-Convex Regular Languages
A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ∈ Σ, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefixclosed, and prefix-free languages. We study complexity properties of prefix-convex regular languages. In particular, we find the quotient/state complexity of boolean operations, product (concatenation), star, and reversal,...
متن کاملComplexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages
A language L over an alphabet Σ is suffix-convex if, for any words x, y, z ∈ Σ∗, whenever z and xyz are in L, then so is yz. Suffixconvex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean o...
متن کاملComplexity of regular bifix-free languages
We study descriptive complexity properties of the class of regular bifix-free languages, which is the intersection of prefix-free and suffix-free regular languages. We show that there exist a single ternary universal (stream of) bifix-free languages that meet all the bounds for the state complexity basic operations (Boolean operations, product, star, and reversal). This is in contrast with suff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 24 شماره
صفحات -
تاریخ انتشار 2013